JOM 23687PC

Preliminary Communication

Ubergangsmetallallyle

VII. Synthese von η^3 -Allylnickelund η^3 -Allylpalladiumkomplexen mit Trifluoracetatgruppen als Brückenliganden

R. Goddard, C. Krüger, R. Mynott, M. Neumann und G. Wilke

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, W-4330 Mülheim an der Ruhr (Deutschland)

(Eingegangen den 5. März 1993)

Abstract

A series of $bis(\eta^3$ -allyl)nickel- and $(\eta^3$ -allyl)palladium trifluoroacetates has been prepared from the appropriate η^3 -allylmetal halide and silver trifluoroacetate in dichloromethane and characterized by NMR spectroscopy and an X-ray diffraction study.

1. Einleitung

Homoleptische η^3 -Allylverbindungen sowie η^3 -Allylanionenkomplexe der Metalle der 3. bis 8. Nebengruppe sind seit drei Jahrzehnten bekannt [1,2] und in vielfältiger Weise als Katalysatoren untersucht worden [2]. Ein spezielles Interesse erlangten dabei der η^3 -Allylkomplex mit Carboxylatgruppen, als sich zeigte, daß das η^3 -Allylnickelacetat bzw. das η^3 -Allylnickeltrifluoracetat als Katalysatoren für die stereospezifische Polymerisation von 1,3-Dienen in homogener Phase besonders aktiv sind [3,4]. Beide Komplexe waren jedoch nur an Hand ihrer ¹H-NMR-Spektren identifiziert worden. Im Zusammenhang mit Untersuchungen über Reaktionen von 1,1-Difluorcyclopropabenzol mit η^3 -Allylnickel- und -palladiumverbindungen [5] haben wir eine Reihe von neuen η^3 -Allylnickelund -palladiumtrifluoracetaten hergestellt und charakterisiert.

2. Ergebnisse und Diskussion

Die Umsetzungen der η^3 -Allylnickelhalogenide [4] **1a–4a** und η^3 -Allylpalladiumhalogenide [5,6] **1b–4b** mit Silbertrifluoracetat führt unter vollständigem Austausch der Anionen [7] in hohen Ausbeuten zu den Bis(μ -trifluoracetato)-diallyl-dimetallakomplexen **5a– 8a** und **5b–8b** (Schema 1).

Die Nickelverbindungen 5a-8a sind kristallin, orangebraun bis karminrot gefärbt und deutlich empfindlicher gegen Wasser und Luft als die strukturanalogen gelben Palladiumhomologen 5b-8b. Die Charakterisierung der Komplexe erfolgte durch Elementaranalyse, massenspektrometrische, NMR- und IR-spektroskopische Untersuchungen. In den Massenspektren wurden jeweils die Molekülpeaks der Dimeren gefunden. In den IR-Spektren der Verbindungen erscheinen als charakteristische Banden die allvlischen $\nu_{\rm CH}$ -Valenzschwingungen von 2930 bis 3100 cm⁻¹, die asymmetrischen v_{COO}-Valenzschwingungen im Bereich von 1660–1685 cm⁻¹ und die symmetrischen Streckschwingungen der CF₃-Gruppen von 770-790 cm⁻¹. Die ¹H-NMR-Spektren der Palladiumverbindungen 5b-8b in Lösung bei Raumtemperatur zeigen einheitliche und nicht strukturdvnamische Proben (Tab. 1). Die Nickelkomplexe 5a, 6a und 8a sind dagegen bei gleicher Meßtemperatur strukturdynamisch, wonach erst beim Abkühlen der Proben unter - 30°C scharfe Signale beobachtet werden. Beispielsweise zeigt das ¹H-NMR-Spektrum von **6a** bei – 30°C zwei Komponenten, die nicht miteinander austauschen. Die Hauptkomponente (85%) enthält zwei unterschiedliche aber symmetrisch gebundene η^3 -Pentenvlgruppen, die bei höherer Temperatur miteinander austauschen. In der symmetrischen Nebenkomponente (15%) sind dagegen die η^3 -Pentenylgruppen identisch. In beiden Komponenten sind alle Methylgruppen syn-gebunden. Die Beobachtungen sind mit Schema 2 vereinbar. 5a enthält eine nicht symmetrische neben zwei weiteren Komponenten in einem Verhältnis von 7:2:1, während in 8a bei -80°C zwei Verbindungen im Verhältnis von 4:1 vorliegen. Ein einheitliches ¹H-NMR-Spektrum liefert bei - 30°C lediglich 7a. Eine unabhängige Bestätigung der aus den vorangegangenen Untersuchungen ableitbaren Bindungsverhältnisse liefern die Kristallstrukturanalysen von 8a und 8b (Abb. 1 u. 2, Tab. 2 u. 3), die

Correspondence to: Prof. Dr. G. Wilke.

Edukt		Produkt ^a		<i>T</i> (°C)	%
$[\eta^3$ -CH ₂ CHCH ₂ NiCl] ₂	1a	$[\eta^3$ -CH ₂ CHCH ₂ NiTFA] ₂	5a	- 70	91
$[\eta^3$ -CH ₃ CHCHCHCH ₃ NiBr] ₂	2a	$[\eta^3$ -CH ₃ CHCHCHCH ₃ NiTFA] ₂	6a	- 70	89
$[\eta^3$ -cyclo-C ₈ H ₁₃ NiCl] ₂	3a	$[\eta^3$ -cyclo-C ₈ H ₁₃ NiTFA] ₂	7a	-70	77
$[\eta^3$ -CH ₂ C(CH ₃)CH ₂ NiCl] ₂	4a	$[\eta^3$ -CH ₂ C(CH ₃)CH ₂ NiTFA] ₂	8a	-70	92
$[\eta^3$ -CH ₂ CHCH ₂ PdCl],	1b	$[\eta^3$ -CH ₂ CHCH ₂ PdTFA] ₂	5b	-30	93
$[\eta^3$ -CH ₃ CHCHCHCHCH ₃ PdBr] ₂	2b	$[\eta^3$ -CH ₃ CHCHCHCH ₃ PdTFA] ₂	6b	-30	93
$[\eta^3$ -cyclo-C ₈ H ₁₃ PdCl] ₂	3b	$[\eta^3$ -cyclo-C ₈ H ₁₃ PdTFA] ₂	7b	-30	63
$[\eta^3$ -CH ₂ C(CH ₃)CH ₂ PdCl] ₂	4b	$[\eta^3$ -CH ₂ C(CH ₃)CH ₂ PdTFA] ₂	8b	-30	95

^a TFA = OCOCF₃ (trifluoroacetyl).

Schema 1. Synthese von 5a-8a und 5b-8b.

isostrukturell sind. Im binuclearen Komplex **8a** [8b] liegen die Ni[Pd]-Atome in planarer Koordination vor (maximale Abweichung 0.02[0.02] Å). Sie werden durch zwei *syn-syn-*verbrückende Trifluoracetatliganden verknüpft, wobei die Koordinations-ebenen der beiden Metallatome einen Winkel von 35[36]° bilden. Die zwei η^3 -Methylallylgruppen stehen in anti-Stellung zueinander (der Interplanarwinkel zwischen den Ebenen Ni[Pd],O(1),O(2),C(1),C(3) und C(1)*,C(2)*,C(3)* beträgt 110.6[113.4]°). Das gesamte Molekül weicht von der erwarteten C_{2e} -Symmetrie ab, so daß der Komplex lediglich eine exakte 2-zählige Achse aufweist. Die Verdrillung des Komplexes kann durch eine Annäherung der beiden Metallatome bei gleichen Winkeln in den Ni[Pd]-O-C-O-Ni[Pd]-Ketten erklärt werden. Der Grund für diese Verzerrung läßt sich sowohl auf Packungseffekte im Kristall, als auch auf eine schwache Metall-Metall-Wechselwirkung zurückführen, wobei letzteres wegen des langen Ni-Ni[Pd-Pd]-Abstandes 3.042(2)[3.086(1)] Å und der unverzerr-

TABELLE 1. ¹H-NMR-Daten der Bis(μ -trifluoroacetato)-diallyl-dipalladiumkomplexe **5b**-**8b** (200 MHz, δ bezogen auf TMS, J in Hz); unsystematische Numerierung angegeben

Komplex	δ_1	δ_2	δ_3	δ_4	δ_5	J (Hz)	Messtemperatur (°C)	Lösungsmittel
5b ^a	5.62m	3.08d	4.14d			$J_{1,2} = 12.2$ $J_{1,2} = 6.8$	27	CD ₂ Cl ₂
6b ^b	5.30t	3.73m	1.16d			$J_{1,2} = 10.8$ $J_{2,2} = 6.4$	27	CDCl ₃
7 b ^c	5.35t	1.92/2.39m	4.74m	1.25m		$J_{1,3} = 7.9$ $J_{2,3} = 8.1$	27	CD ₂ Cl ₂
8b ^d	2.28s	2.90s	3.92s			2,3 -	27	CD_2Cl_2

Nebenkomponente (15%)

Schema 2.

ten Koordinationsebenen der Metallatome als unwahrscheinlich erscheint. Eine abstoßende Wechselwirkung der anti-H-Atome an den beiden η^3 -Methylallylgruppen ist aufgrund des großen C(1) ··· C(3)*-Abstandes 4.13[4.24] Å ebenfalls auszuschließen. Beide Verbindungen (**8a** und **8b**) weisen hohe thermische Bewegungsparameter der F-Atome auf, die auf eine ungehinderte Rotation der CF₃-Gruppen um die C(5)-C(6)-Achse hinweisen, welche im Fall der Verbindung **8a** als Fehlordnung der CF₃-Gruppe im Kristall aufgelöst werden konnte. In ihrer Geometrie unterscheiden sich **8a** und **8b** im wesentlichen durch die Metall-O- und Metall-C-Abstände, die für **8b** aufgrund des größeren kovalenten Radius von Pd syste-

Abb. 1. Kristallstruktur von **8a** (Ni). Ausgewählte Abstände (Å) und Winkel (°). Ni \cdots Ni * 3.042(2), Ni-O(1) 1.928(5), Ni-O(2) 1.936(5), Ni-C(1) 1.978(8), Ni-C(2) 1.987(7), Ni-C(3) 1.973(8), O(1)-C(5) 1.239(9), O(2)-C(5)* 1.230(9), C(1)-C(2) 1.39(1), C(2)-C(3) 1.40(1): O(1)-Ni-O(2) 94.0(2), C(5)-O(1)-Ni 125.2(5), C(5)*-O(2)-Ni 126.5(5), C(1)-C(2)-C(3) 113.9(7), O(1)-C(5)-O(2)* 130.7(7).

Abb. 2. Kristallstruktur von **8b** (Pd). Projektion auf eine Ebene durch die beiden Pd Atome, um den Winkel (36°) zwischen den Koordina tionsebenen darzustellen. Pd \cdots Pd* 3.086(1), Pd–O(1) 2.114(4), Pd–O(2) 2.145(4), Pd–C(1) 2.073(5), Pd–C(2) 2.129(4), Pd–C(3) 2.096(5), O(1)–C(5) 1.243(7), O(2)–C(5)* 1.239(7), C(1)–C(2) 1.369(7), C(2)–C(3) 1.422(7); O(1)–Pd–O(2) 92.2(2), C(5)–O(1)–Pd 123.8(3), C(5)* –O(2)–Pd 124.3(4), C(1)–C(2)–C(3) 116.1(5), O(1)–C(5)–O(2)* 131.6(5).

matisch länger sind; der Metall-Metall-Abstand wird dadurch allerdings kaum beeinflußt.

3. Experimenteller Teil

Alle Reaktionen wurden in gereinigten Lösungsmitteln unter Inertgas (Argon) durchgeführt. NMR-Spektren: Bruker AM 200 FT. IR-Spektren: 7199 FT Nicolet. Massenspektren: Varian MAT 311 A DF bei 70 eV. Die Verbindungen **1a-4a** [4] und **1b-4b** [5b] wurden nach Literaturvorschriften hergestellt.

TABELLE 2. Atomkoordinaten und isotrope thermische Parameter (\mathring{A}^2) von 8a

Atom	X	y	~	$U_{\rm eq}^{-a}$
Ni	0.2048(1)	0.1266(1)	0.1957(1)	0.049
F(1)	0.047(1)	0.347(1)	0.4932(8)	0.088
F(2)	-0.028(1)	0.165(1)	0.4558(7)	0.088
F(3)	-0.072(1)	0.333(1)	0.3784(7)	0.088
F(11)	-0.009(1)	0.401(1)	0.415(1)	0.121
F(13)	-0.075(1)	0.238(1)	0.411(1)	0.121
F(12)	0.063(1)	0.282(1)	0.5171(9)	0.121
O(1)	0.0950(4)	0.1937(5)	0.2874(3)	0.068
O(2)	0.2065(5)	0.2731(4)	0.1204(4)	0.070
C(1)	0.2214(8)	~ 0.0342(7)	0.2571(6)	0.071
C(2)	0.2313(7)	-0.0468(6)	0.1605(5)	0.056
C(3)	0.3196(7)	0.0291(7)	0.1202(6)	0.067
C(4)	0.1367(9)	-0.1133(7)	0.1047(6)	0.077
C(5)	0.1262(7)	0.2548(7)	0.3561(5)	0.062
C(6)	0.0208(9)	0.273(1)	0.430(1)	0.132

^a $U_{ca} = 1/3\sum_i \sum_i U_i |a_i^*a_i^*(\mathbf{a}_i \cdot \mathbf{a}_i)),$

TABELLE 3. Atomkoordinaten und isotrope thermische Parameter (\mathring{A}^2) von 8b

Atom	x	у	Z	$U_{\rm eq}^{\rm a}$
Pd	0,2006(1)	0.1314(1)	0.1942(1)	0.041
F(1)	0.0383(4)	0.3208(6)	0.5132(3)	0.139
F(2)	-0.0486(6)	0.1834(7)	0.4580(5)	0.248
F(3)	-0.0583(6)	0.3631(8)	0.4170(7)	0.315
O(1)	0.0788(3)	0.2089(4)	0.2905(3)	0.067
O(2)	0.2029(5)	0.2904(3)	0.1093(3)	0.070
C(1)	0.2156(5)	-0.0369(5)	0.2554(4)	0.063
C(2)	0.2288(5)	-0.0529(4)	0.1608(3)	0.052
C(3)	0.3157(5)	0.0211(5)	0.1161(4)	0.061
C(4)	0.1355(6)	-0.1185(5)	0.0969(5)	0.079
C(5)	0.1100(4)	0.2616(5)	0.3633(4)	0.059
C(6)	0.0066(5)	0.2836(7)	0.4353(5)	0.096

 $\overline{{}^{\mathbf{a}} U_{\mathbf{eq}} = 1/3\sum_{i}\sum_{j}U_{ij}a_{i}^{*}a_{j}^{*}(\mathbf{a}_{i}\cdot\mathbf{a}_{j})}.$

3.1. Allgemeine Arbeitsvorschrift für die Verbindungen 5a-8a

3.1.1. Bis(µ-trifluoracetato)-diallyl-dinickel(II) 5a

 η^3 -Allylnickelchlorid **1a** (2.78 g, 20.56 mmol) wird bei -20° C in 50 ml Methylenchlorid gelöst und unter starkem Rühren zu einer auf -70°C gekühlten Suspension Silbertrifluoracetat (4.60 g, 20.83 mmol) in 50 ml Methylenchlorid gehebert. Nach kurzer Zeit färbt sich die dunkelrote Reaktionsmischung orangebraun. Man rührt noch zwei Stunden lang bei – 70°C, filtriert ausgefallenes Silberchlorid über eine mit Trockeneis gekühlte D₃-Fritte mit Celite als Filtrierhilfe ab und entfernt das Solvens bei etwa -20°C im Ölpumpenvakuum bis zur Trockene. Das erhaltene Rohprodukt wird bei 0°C in 35 ml Diethylether aufgenommen, über eine D_3 -Fritte filtriert und bei -78° C erneut nach Zugabe von etwa 20 ml Pentan zur Kristallisation gebracht. Nach drei Tagen Stehen wird die Mutterlauge mit einem Tauchfrittenheber abgedrückt und der erhaltene mikrokristalline Rückstand im Hochvakuum getrocknet. Man erhält 3.99 g (91% d.Th.) orangebraunes Pulver. Zers. 93°C. MS: m/z 424 (M⁺, 9%), 212 (M⁺/2, 6%), 41 (100%). IR (KBr (cm⁻¹)): 2930w (CH₂), 1660s (COO), 790m (CF₃). ¹H-NMR (400 MHz, -30° C, CD₂Cl₂, TMS): Hauptkomponente (70%) $\delta =$ 6.24 (1 H, H-1) und 5.73 (1 H, H-1); 3.31 (2 H, H-3) und 3.18 (2 H, H-3); 2.78 (2 H, H-2) und 2.46 (2 H, H-2); Nebenkomponente (20%) $\delta = 6.10$ (1 H, H-1); 3.21 (2 H, H-3); 2.57 (2 H, H-2); Nebenkomponente $(10\%) \delta = 6.38 (1 \text{ H}, \text{H-1}); 2.37 (2 \text{ H}, \text{H-2}). (Gef.: C,$ 28.4; H, 2.39; F, 26.82; Ni, 27.73. C₁₀H₁₀O₄F₆Ni₂ ber.: C, 28.22; H, 2.37; F, 26.79; Ni, 27.58%).

3.1.2. $Bis(\mu$ -trifluoracetato)-dipentenyl-dinickel(II) **6a** Ansatz: η^3 -Pentenylnickelbromid **2a** (3.09 g, 14.87 mmol) und Silbertrifluoracetat (3.31 g, 14.98 mmol) in

100 ml Methylenchlorid. Man erhält 3.18 g (89% d.Th.) hellbraunes Pulver. Zers. 145°C. MS: m/z 480 (M⁺, 5%), 410 (M⁺ - C₅H₁₀, 3%), 366 (M⁺ - C₂HF₃O₂, 8%), 69 (C₅H₉, 74%). IR (KBr (cm⁻¹)): 2960w (CH), 1670s (COO), 790m (CF₃). ¹H-NMR (400 MHz, -30°C, Toluol-*d*₈, TMS): Signalzuordnung aus COSY-Spektrum: Hauptkomponente (85%) 1. Pentenylgruppe δ = 4.63 (t, 1 H, H-1 ³*J*_(1,2) = 11.5 Hz); 2.29 (m, 2 H, H-2, ³*J*_(2,3) = 7 Hz); 0.30 (d, 6 H, H-3); 2. Pentenylgruppe δ = 4.19 (t, 1 H, H-1 ³*J*_(1,2) = 11.9 Hz); 2.29 (m, 2 H, H-2, ³*J*_(2,3) = 6.4 Hz); 0.19 (d, 6 H, H-3); Nebenkomponente (15%) δ = 4.74 (t, 1 H, H-1 ³*J*_(1,2) = 11.9 Hz); 2.13 (m, 2 H, H-2, ³*J*_(2,3) = 7.0 Hz); 0.22 (d, 6 H, H-3). (Gef.: C, 34.79; H, 4.08; F, 23.64; Ni, 23.88. C₁₄H₁₈O₄F₆Ni₂ ber.: C, 34.91; H, 3.77; F, 23.67; Ni 24.37%).

3.1.3. Bis(µ-trifluoracetato)-dicyclooctenyl-dinickel (II) 7a

Ansatz: η^3 -Cyclooctenylnickelchlorid **3a** (2.84 g, 13.97 mmol) und Silbertrifluoracetat (3.09 g, 13.99 mmol) in 80 ml Methylenchlorid. Man erhält 3.01 g (77% d.Th.) karminrotes Pulver. Zers. 53°C. MS: To-talzersetzung. IR (KBr (cm⁻¹)): 2940w (CH₂), 1680s (COO), 790s (CF₃). ¹H-NMR (200 MHz, -30° C, Toluol- d_8 , TMS): $\delta = 5.21$ (t, 1 H, H-1); 1.90 (m.br, 4 H, H-2, ${}^{3}J_{(2,3)} = 8.5$ Hz); 3.32 (q, 2 H, H-3, ${}^{3}J_{(1,3)} = 8.1$ Hz); 1.14 (m.br, 6 H, H-4-5). (Gef.: C, 41.93; H, 4.44; F, 18.65; Ni, 19.20. C₂₀H₂₆O₄F₆Ni₂ ber.: C, 42.76; H, 4.66; F, 20.29; Ni, 20.89%).

3.1.4. Bis(µ-trifluoracetato)-di(2-methyl)allyl-dinickel(II) 8a

Ansatz: (2-Methyl)allylnickelchlorid **4a** (2.03 g, 13.61 mmol) und Silbertrifluoracetat (3.06 g, 13.85 mmol) in 100 ml Methylenchlorid. Man erhält 2.84 g (92% d.Th.) rote Kristalle; Zers. 55°C. MS: m/z 452 (M⁺, 18%), 226 (M⁺, 8%), 168 (87%), 113 (100%). IR (KBr (cm⁻¹)): 3090w (CH₂), 3000w (CH₃), 1675s (COO), 1385w (CH₃), 730m (CF₃). ¹H-NMR (400 MHz, -80°C, CD₂Cl₂, TMS): Hauptkomponente (78%) $\delta = 2.71$ (s, 3 H, H-1); 3.01 (s, 2 H, H-3); 2.18 (s, 2 H, H-2). (Gef.: C, 31.85; H, 3.12; F, 25.05; Ni, 25.83. C₁₂H₁₄O₄F₆Ni₂ ber.: C, 31.77; H, 3.11, F, 25.13, Ni, 25.88%).

Kristallstrukturanalyse von **8a**: Formel C₁₂H₁₄F₆O₄-Ni₂, Molmasse 453.7, Kristallgröße 0.07 × 0.19 × 0.24 mm, a = b = 10.957(1), c = 14.327(3) Å, V = 1720.1 Å³, $d_{\text{ber}} = 1.75$ g cm⁻³, $\mu = 34.25$ cm⁻¹, F(000) = 912 e, Z = 4, Kristallsystem tetragonal, Raumgruppe $P\bar{4}n2$ (Nr. 118), Enraf-Nonius-CAD4-Diffraktometer, $\lambda =$ 1.54178 Å, Meßmethode $\omega - 2\theta$, 5779 gemessene Reflexe, $(\pm h, \pm k, \pm l)$, $[(\sin \theta)/\lambda]_{\text{max}}$ 0.63 Å⁻¹, empirische Absorptionskorrektur (min: 0.888, max: 0.999), 1786 unabhängige und 1717 beobachtete Reflexe [$I > 2\sigma(I)$], 102 verfeinerte Parameter; Schweratom-Methoden, H-Atom-Positionen berechnet und in die Least-squares-Verfeinerung nicht aufgenommen, R = 0.067, $R_{\rm W} = 0.060$ [$w = 1/\sigma^2$ (F_0)], Verfeinerung der invertierten Struktur ergab R = 0.069, $R_{\rm W} = 0.064$, max. Restelektronendichte 1.39 e Å⁻³, 50:50 Fehlordnung der CF₃-Gruppen.

3.2. Allgemeine Arbeitsvorschrift für die Verbindungen 5b-8b:

3.2.1. Bis(µ-trifluoracetato)-diallyl-dipalladium(II) 5b Unter starkem Rühren wird eine Lösung von η^3 -Allylpalladiumchlorid 1b (4.02 g, 21.98 mmol) in 50 ml Methylenchlorid bei - 30°C zu einer Suspension von Silbertrifluoracetat (5.11 g, 23.13 mmol) in 50 ml Methylenchlorid gehebert. Man rührt die Reaktionsmischung 2.5 Stunden lang bei - 30°C. Eine Farbänderung ist nicht zu beobachten. Anschließend filtriert man das ausgefallene Silberchlorid zweimal über eine D3-Fritte mit Celite als Filtrierhilfe ab und entfernt das Lösungsmittel im Ölpumpenvakuum bis zur Trockene. Der Rückstand wird zweimal mit etwa 20 ml kaltem Diethylether gewaschen und anschließend im Hochvakuum getrocknet. Man erhält 5.34 g (93% d.Th.) gelben Feststoff. Zers. 128°C. MS: m/z 520 $(M^+, 12\%)$. IR (KBr (cm⁻¹)): 3090w (CH₂), 1660s (COO), 790m (CF₃). ¹H-NMR (200 MHz, 27°C, CD_2Cl_2 , TMS): $\delta = 5.62$ (m, 1 H, H-1); 3.08 (d, 2 H, $H-2_{anti}^{3}J_{(2,1)} = 12.2 Hz$; 4.14 (d, 2 H, $H-3_{syn}$, ${}^{3}J_{(3,1)} =$ 6.8 Hz). (Gef.: C, 23.17; H, 1.98; F, 21.16; Pd, 40.66. C₁₀H₁₀O₄F₆Pd, ber.: C, 23.03; H, 1.93; F, 21.88; Pd 40.85%).

3.2.2. Bis(µ-trifluoracetato)-dipentenyl-dipalladium (II) **6b**

Ansatz: η^3 -Pentenylpalladiumbromid **2b** (4.50 g, 17.62 mmol) und Silbertrifluoracetat (5.12 g, 23.18 mmol) in 100 ml Methylenchlorid. Man erhält 4.70 g (93% d.Th.) gelben Feststoff. Zers. 125°C. MS: m/z 576 (M⁺, 7%), 462 (M⁺ – CF₃COOH, 15%), 288 (M⁺/2, 18%), 67 (100%). IR (KBr (cm⁻¹)): 2980w (CH), 1660s (COO), 1380w (CH₃), 790w (CF₃). ¹H-NMR (200 MHz, 27°C, CDCl₃, TMS): δ = 5.30 (t, 1 H, H-1); 3.73 (m, 2 H, H-2, ³J_(2,1) = 10.8 Hz); 1.16 (d, 6 H, H-3, ³J_(2,3) = 6.4 Hz). (Gef.: C, 29.24; H, 3.18: F, 19.81; Pd, 36.71. C₁₄H₁₈O₄F₆Pd₂ ber.: C, 29.14; H, 3.14; F, 19.75; Pd, 36.88%).

3.2.3. Bis(µ-trifluoracetato)-dicyclooctenyl-dipalladium(II) **7b**

Ansatz: η^3 -Cyclooctenylpalladiumchlorid **3b** (1.3 g, 5.18 mmol) und Silbertrifluoracetat (1.19 g, 5.39 mmol) in 50 ml Methylenchlorid. Man erhält 1.08 g (63% d.Th.) zitronengelbes Pulver. Zers. 62°C. MS: m/z 656

(M⁺, <1%), weitere charakteristische Ionen (<1%) mit 544, 432, 318, 212, 108 (C_8H_{12} , 27%). IR (KBr (cm⁻¹)); 3100w (CH), 2950s (CH₂), 1685s (COO), 770m (CF₃). ¹H-NMR (200 MHz, 27°C, CD₂Cl₂): δ = 5.35 (t, 1 H. H-1, ³J_(1,3) = 7.9 Hz); 2.39 (m, 2 H, H-2_{endo}, ³J_(2endo,3) = 8.1 Hz); 1.92 (m, 2 H, H-2_{exo}, ³J_(2exo,3) = 8.1 Hz); 4.74 (m, 2 H, H-3.); 1.52 (m, 6 H, H-4-5). (Gef.: C, 36.47; H, 3.87; F, 17.31; Pd. 31.13. C₂₀H₂₆O₄F₆Pd₂ ber.; C, 36.55; H, 3.98; F, 17.34, Pd. 32.38%).

3.2.4. Bis(µ-trifluoracetato)-di(2-methyl)allyl-dipalladium(II) 8b

Ansatz: (2-Methyl)allylpalladiumchlorid **4b** (1.27 g, 6.45 mmol) und Silbertrifluoracetat (1.46 g, 6.61 mmol) in 100 ml Methylenchlorid. Man erhält 1.68 g (95% d.Th.) blaßgelben Feststoff: Zers. 135°C. MS: m/z 548 (M⁺, 11%), 161 (100%). IR (KBr (em⁻¹)): 3090w (CH₂), 1665s (COO), 1410w (CH₃), 790m (CF₃). ¹⁹F-NMR (188 MHz, 27°C, CD₂Cl₂, CCl₃F extern): $\delta = -74.98$ (s, CF₃). ¹H-NMR (200 MHz, 27°C, CD₂Cl₂, TMS): $\delta = 2.28$ (s. 3 H, H-1); 2.90 (s. 2 H, H-2_{antt}); 3.92 (s, 2 H, H-3_{xvn}). (Gef.: C, 26.20, H. 2.49; F, 20.59; Pd, 38.83. C₁₂H₁₄O₄F₆Pd₂ ber.: C. 26.25; H, 2.57, F, 20.76. Pd, 38.76%).

Kristallstrukturanalyse von **8b**: Formel $C_{12}H_{14}F_6O_4$ -Pd₅, Molmasse 549.1, Kristallgröße $0.36 \times 0.47 \times 0.22$ mm, a = b = 11.127(1), c = 14.266(1) Å. V = 1766.4 Å³, $d_{\rm ber} = 2.07 \text{ g cm}^{-3}, \ \mu = 20.81 \text{ cm}^{-1}, \ F(000) = 1056 \text{ e},$ Z = 4, Kristallsystem tetragonal, Raumgruppe $P\overline{4}n2$ (Nr. 118), Enraf-Nonius-CAD4-Diffraktometer, $\lambda =$ 0.71069 Å, Meßmethode ω -2 θ , 10801 gemessene Reflexe, $(\pm h, \pm k, \pm l)$. $[(\sin \theta)/\lambda]_{max} = 0.70$ Å⁻¹, 2589 unabhängige und 2529 beobachtete Reflexe [I > $2\sigma(I)$], 109 verfeinerte Parameter; Schweratom-Methoden, H-Atom-Positionen berechnet und in die Leastsquares-Verfeinerung nicht aufgenommen. R = 0.036, $R_{\rm w} = 0.035$ $[w = 1/\sigma^2 - (F_0)]$, max. Restelektronen-dichte 1.55 e Å⁻³ (0.97 Å von F3) weist auf eine Rotationsfehlordnung der CF3-Gruppe hin. Weitere Angaben zu den kristallstrukturanalvsen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-57090, der Autoren und des Zeitschriftenzitats angefordert werden.

Literatur

¹ G. Wilke (Studiengesellschaft Kohle m.b.H.), DB Patent 1190939, Prior, 18.4.1962.

 ⁽a) G. Wilke (Studiengesellschaft Kohle m.b.H.), US Patent 3379706 (1968), Univers prior. 10.8.1963; (b) G. Wilke, B. Bogdanović, P. Hardt, P. Heimbach, W. Keim, M. Kröner, W. Oberkirch, K. Temaka, E. Steinrücke, D. Walter und H. Zimmermann, Angew. Chem., 78 (1966) 157; Angew. Chem., Int. Ed. Engl., 5 (1966) 151.

- 3 (a) F. Dawans, J.C. Marechal und Ph. Teyssie, J. Organomet. Chem., 21 (1970) 259; (b) D. Robinson und B.L. Shaw, J. Organomet. Chem., 3 (1965) 367; (c) P.W.N.M. van Leeuwen und A.P. Praat, J. Organomet. Chem., 21 (1970) 501; (d) P.M. Maitlis, The Organic Chemistry of Palladium, Vol. 1, Academic Press, New York, 1971.
- 4 (a) E.O. Fischer und G. Bürger, Z. Naturforsch., 16b (1961) 77; (b) G. Wilke (Studiengesellschaft Kohle m.b.H.), DB Patent 1194417, Prior. 10.8.1963.
- 5 W. Bock, B. Gabor, R. Mynott, R. Neidlein, M. Neumann und G. Wilke, *Chem. Ber.*, eingereicht; M. Neumann, *Dissertation*, Universität Bochum, 1991.
- 6 (a) J. Smidt und W. Hafner, Angew. Chem., 71 (1959) 284; (b) Y. Tatsuno, T. Yoshida und S. Otsuka, Inorg. Synth., 19 (1979) 101.
- 7 M.J. Baillie, D.H. Brown, K.C. Moss und D.W.A. Sharp, J. Chem. Soc. (A), (1968) 3110.